Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet

Funct Plant Biol. 2019 Sep;46(10):916-924. doi: 10.1071/FP19079.

Abstract

Signal transduction mediated by photoreceptors regulates many physiological processes during plant growth and development including seed germination, flowering and photosynthesis, which are also regulated by hydrogen sulfide (H2S). However, studies of the connection between the vital environmental factors - light and the significant endogenous gasotransmitter - H2S, is lacking. Here, the seedlings of foxtail millet were used to reveal the mechanism of light regulation in H2S generation. Results showed that seedling hypocotyl elongation was promoted by H2S, but inhibited by HA under dark or white light condition. H2S contents in hypocotyl increased at first under red, blue or white light then decreased, and the duration of increase under white light was longer than under red or blue light. The activity of cysteine desulfhydrases, which catalyse H2S generation, was increased by red light but decreased by blue and white light. The expressions of cysteine desulfhydrases coding genes LCD1 and LCD2 were promoted by red or white light, but inhibited by blue light. In contrast, DES gene was promoted by white light but inhibited by red or blue light. In addition, the activities of LCDs were regulated by the phosphorylation mediated by photoreceptors PHYB and CRY1/CRY2. Finally, there are two pathways of light regulating H2S production, including a rapid process that involves the modification of phosphorylation on LCDs protein mediated by photoreceptors directly or indirectly, as well as a slower process that involves in regulating the expressions of LCDs and DES genes. This discovery has potential value for the application of H2S in agricultural production protecting the crops from unsuited light condition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis*
  • Hydrogen Sulfide*
  • Morphogenesis
  • Setaria Plant*
  • Signal Transduction

Substances

  • Hydrogen Sulfide