Rationale: Limited data on the epidemiology of acute respiratory distress syndrome (ARDS) using a standardized screening program exist.Objectives: To describe the population-based incidence of hypoxemic respiratory failure and ARDS using a prospective standardized screening protocol; and to describe the mechanical ventilation practice and the mechanical power and examine their association with 28-day and 3-year survival outcomes.Methods: A prospective standardized screening program for ARDS, as a quality improvement initiative, was initiated at four adult intensive care units over a 27-month period. An ancillary analysis of this observational cohort was performed. Patients requiring mechanical ventilation for ≥24 hours underwent prospective and consecutive screening using standardized ventilator settings. Patient physiological data and outcomes were collected prospectively through an electronic clinical-information system and retrospectively analyzed to apply Berlin criteria.Results: Screened were 7,944 patients, among which 986 (12.4%) had hypoxemic respiratory failure (arterial oxygen tension to inspired fraction of oxygen ratio ≤300), and 731 (9.2%) met criteria for ARDS. Age-adjusted incidence of hypoxemic respiratory failure and ARDS were 37.7 and 27.6 cases per 100,000 person-years, respectively. Patients sustaining the diagnosis of ARDS had a hospital mortality of 26.5% for mild, 31.8% for moderate, and 60.0% for severe ARDS and a 3-year mortality of 43.5% for mild, 46.9% for moderate, and 71.1% for severe ARDS. Mechanical power >22 J/min was associated with increased 28-day hospital and 3-year mortality. Determinants of mechanical power associated with lower 28-day hospital and 3-year survival included plateau pressure >30 cm H2O and driving pressure >15 cm H2O, but not tidal volumes >8 ml/kg of predicted body weight.Conclusions: Using standardized screening, a large proportion of patients with hypoxemic respiratory failure met criteria for ARDS. Increasing ARDS severity was associated with increased 28-day hospital and 3-year mortality. Increased mechanical power was associated with increased mortality. Potentially modifiable determinants of mechanical power associated with lower survival included plateau pressure and driving pressure.
Keywords: adult; mechanical ventilation; respiratory distress syndrome.