Materials that demonstrate large magnetoresistance have attracted significant interest for many decades. Extremely large tunnel magnetoresistance (TMR) has been reported by several groups across ultrathin CrI3 by exploiting the weak antiferromagnetic coupling between adjacent layers. Here, we report a comparative study of TMR in all three chromium trihalides (CrX3, X = Cl, Br, or I) in the two-dimensional limit. As the materials exhibit different transition temperatures and interlayer magnetic ordering in the ground state, tunneling measurements allow for an easy determination of the field-temperature phase diagram for the three systems. By changing sample thickness and biasing conditions, we then demonstrate how to maximize and further tailor the TMR response at different temperatures for each material. In particular, near the magnetic transition temperature, TMR is nonsaturating up to the highest fields measured for all three compounds owing to the large, field-induced exchange coupling.
Keywords: 2D magnetism; chromium trihalides; tunnel magnetoresistance; van der Waals heterostructures.