APE1 Upregulates MMP-14 via Redox-Sensitive ARF6-Mediated Recycling to Promote Cell Invasion of Esophageal Adenocarcinoma

Cancer Res. 2019 Sep 1;79(17):4426-4438. doi: 10.1158/0008-5472.CAN-19-0237. Epub 2019 Jul 15.

Abstract

Esophageal adenocarcinoma (EAC) is an aggressive malignancy with poor clinical outcome. The incidence of EAC has been rising rapidly in the past three decades. Here, we showed that apurinic/apyrimidinic endonuclease (APE1) is overexpressed in EAC cell lines, and patients' samples of dysplasia and EAC. Downregulation of APE1 or inhibition of its redox function significantly repressed invasion. Overexpression of a redox-defective mutant, C65A, abrogated the proinvasive phenotype of APE1. APE1 regulated invasion via upregulation of matrix metalloproteinase 14 (MMP-14), which subsequently activated MMP-2, leading to degradation of the extracellular matrix in a redox-dependent manner. Downregulation of APE1 or inhibition of its redox function decreased the rate of endocytosis and recycling of MMP-14 protein. APE1 interacted with ARF6, a key regulator of MMP-14 recycling, which maintained ARF6 activity in an APE1-redox-dependent manner, promoting its ability to regulate MMP-14 recycling to the cell surface. In summary, these findings identify a novel redox-sensitive APE1-ARF6-MMP-14 signaling axis that mediates cellular invasion in esophageal carcinogenesis. SIGNIFICANCE: This study demonstrates the association between oxidative stress and the development and metastatic behavior of esophageal adenocarcinoma.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • ADP-Ribosylation Factor 6
  • ADP-Ribosylation Factors / genetics
  • ADP-Ribosylation Factors / metabolism*
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology*
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / genetics
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / metabolism*
  • Endocytosis / physiology
  • Esophageal Neoplasms / metabolism
  • Esophageal Neoplasms / pathology*
  • Humans
  • Matrix Metalloproteinase 14 / metabolism*
  • Oxidation-Reduction
  • Protein Stability
  • Tumor Cells, Cultured
  • Up-Regulation

Substances

  • ADP-Ribosylation Factor 6
  • MMP14 protein, human
  • Matrix Metalloproteinase 14
  • ADP-Ribosylation Factors
  • ARF6 protein, human
  • APEX1 protein, human
  • DNA-(Apurinic or Apyrimidinic Site) Lyase

Supplementary concepts

  • Adenocarcinoma Of Esophagus