Purpose of review: Genome-wide association studies have delineated the genetic architecture of type 2 diabetes. While functional studies to identify target transcripts are ongoing, new genetic knowledge can be translated directly to health applications. The review covers several translation directions but focuses on genomic polygenic scores for screening and prevention.
Recent findings: Over 400 genomic variants associated with T2D and its related quantitative traits are now known. Genetic scores comprising dozens to millions of associated variants can predict incident T2D. However, measurement of body mass index is more efficient than genetic scores to detect T2D risk groups, and knowledge of T2D genetic risk alone seems insufficient to improve health. Genetically determined metabolic sub-phenotypes can be identified by clustering variants associated with physiological axes like insulin resistance. Genetic sub-phenotyping may be a way forward to identify specific individual phenotypes for prevention and treatment. Genomic polygenic scores for T2D can predict incident diabetes but may not be useful to improve health overall. Genetic detection of T2D sub-phenotypes could be useful to personalize screening and care.
Keywords: Epidemiology; Genetics; Genomics; Health outcomes; Risk score; Type 2 diabetes.