Evaluation of canine 2D cell cultures as models of myxomatous mitral valve degeneration

PLoS One. 2019 Aug 15;14(8):e0221126. doi: 10.1371/journal.pone.0221126. eCollection 2019.

Abstract

The utility of cells cultured from the mitral valve as models of myxomatous diseases needs to be properly validated. In this study valve interstitial cells (VICs) and valve endothelial cells (VECs) were cultured from normal and diseased canine mitral valves in 2% (v/v) or 10% FBS media, in the presence of TGFβ1, 2 and 3, the TGFβ RI kinase inhibitor SB431542 and TGFβ neutralising antibodies, 5HT and the 5HT2RB antagonist LY272015. Cultures were examined by morphology, transcriptomic profiling, protein expression of the cell specific markers αSMA and SM22α (VICs), and CD31 (VECs), deposition of proteoglycans (PG), the PG versican, and the TGFβs themselves. VECs derived from normal valves were CD31+/αSMA-, but those from diseased valves were αSMA+, indicating endothelial-to-mesenchymal (EndoMT) transition had occurred. The TGFβs induced EndoMT in normal VECs, and this was abolished by SB431542, with significant changes in αSMA, CD31 and HAS2 expression (P<0.05). Normal VICs cultured in 10% FBS media were αSMA+ (activated myofibroblast (disease) phenotype), but were αSMA- when grown in 2% FBS. VICs from diseased dogs were αSMA+ in 2% FBS (retention of the activated myofibroblast disease phenotype), with significantly increased TGFβ1 expression (P<0.05) compared to normal cells. Treatment of normal and diseased VICs with the TGFβs significantly increased expression of αSMA, SM22α, versican, the TGFβs themselves, and deposition of PGs (P<0.05), with TGFβ1 being the most potent activator. These effects were either abolished or markedly reduced by SB431542 and a pan-TGFβ neutralizing antibody (P<0.05). SB431542 also markedly reduced αSMA expression in VICs from diseased valves, but 5HT and LY272015 had no effect on VIC phenotype. Transcriptomic profiling identified clear differences in gene expression for the different conditions and treatments that partially matched that seen in native diseased valve tissue, including changes in expression of ACTA2 (αSMA), 5HTR2B, TAGLN (SM22α) and MYH10 (SMemb), gene ontology terms and canonical signalling pathways. Normal and diseased VICs and normal VECs from canine mitral valves can be successfully grown in culture with retention of phenotype, which can be manipulated using TGFβ1 and the TGFβ RI kinase inhibitor SB431542. This optimized cell system can now be used to model MMVD to elucidate disease mechanisms and identify key regulators of disease progression.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, Differentiation / metabolism
  • Cell Culture Techniques*
  • Dog Diseases / metabolism*
  • Dog Diseases / pathology
  • Dogs
  • Endothelial Cells / metabolism*
  • Endothelial Cells / pathology
  • Mitral Valve / metabolism*
  • Mitral Valve / pathology
  • Mitral Valve Prolapse / metabolism*
  • Mitral Valve Prolapse / pathology
  • Models, Cardiovascular*
  • Myofibroblasts / metabolism*
  • Myofibroblasts / pathology

Substances

  • Antigens, Differentiation

Grants and funding

KT’s salary and the consumable costs of the project were funded by Zoetis Animal Health, Kalamazoo, Michigan USA, https://www.zoetis.com/.