Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response

Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19552-19562. doi: 10.1073/pnas.1906102116. Epub 2019 Sep 9.

Abstract

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.

Keywords: 53BP1 nuclear bodies; DNA double-strand break; E7 protein; RNF168; high-risk human papillomavirus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • DNA Breaks, Double-Stranded*
  • DNA Repair
  • Female
  • Genomic Instability
  • Homologous Recombination
  • Host-Pathogen Interactions
  • Humans
  • Papillomaviridae / metabolism*
  • Papillomavirus E7 Proteins / genetics
  • Papillomavirus E7 Proteins / metabolism*
  • Papillomavirus Infections / genetics
  • Papillomavirus Infections / virology
  • Signal Transduction
  • Tumor Suppressor p53-Binding Protein 1 / metabolism
  • Ubiquitin / genetics
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*
  • Uterine Cervical Neoplasms / virology

Substances

  • Papillomavirus E7 Proteins
  • TP53BP1 protein, human
  • Tumor Suppressor p53-Binding Protein 1
  • Ubiquitin
  • RNF168 protein, human
  • Ubiquitin-Protein Ligases