Background and aims: Many clinical trials have demonstrated that statins convey protective effects against atherosclerosis independent of cholesterol-lowering capacities. Other evidence indicates that pyroptosis, a type of programmed cell death, is likely involved in atherosclerosis, but the effects and mechanisms of statins on pyroptosis must be further revealed.
Methods: Here, we explored the effects and mechanisms of atorvastatin on pyroptosis in human vascular endothelial cells by quantitative real-time polymerase chain reaction and Western blot analyses.
Results: Atorvastatin upregulated long non-coding RNA (lncRNA) NEXN-AS1 and the expression of NEXN at both the mRNA and protein levels in a concentration- and time-dependent manner. Atorvastatin inhibited pyroptosis by decreasing the expression levels of the canonical inflammasome pathway biomarkers NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 at both the mRNA and protein levels. The promotion effects of atorvastatin on NEXN-AS1 and NEXN expression could be significantly abolished by knockdown of lncRNA NEXN-AS1 or NEXN, and its inhibitory effects on pyroptosis were also markedly offset by knock-down of lncRNA NEXN-AS1 or interference of NEXN.
Conclusions: These results demonstrated that atorvastatin regulated pyroptosis via the lncRNA NEXN-AS1-NEXN pathway, which provides a new insight into the mechanism of how atorvastatin promotes non-lipid-lower effects against the development of atherosclerosis and gives new directions on how to reverse atherosclerosis.
Keywords: Atorvastatin; GSDMD; IL-18; IL-1β; NEXN; NLRP3; Pyroptosis; caspase-1; lncRNA NEXN-AS1.
Copyright © 2019 Elsevier B.V. All rights reserved.