Integrating Duodenal Sampling in a Human Mass Balance Study to Quantify the Elimination Pathways of JNJ-53718678, a Respiratory Syncytial Virus Fusion Protein Inhibitor

Adv Ther. 2020 Jan;37(1):578-591. doi: 10.1007/s12325-019-01162-7. Epub 2019 Dec 12.

Abstract

Introduction: The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study.

Methods: A single oral dose of 500 mg 14C-JNJ-53718678 was administered to six healthy male subjects. Four hours after study drug intake, gallbladder contraction was stimulated and duodenal fluid samples were collected. JNJ-53718678, its key circulating metabolites and total radioactivity (TR) were quantified in plasma, feces, urine and duodenal fluid. Safety was monitored throughout.

Results: JNJ-53718678 and M12 represented 47.4% and 17.8%, respectively, of TR area under the curve (AUC) in plasma. M37 (9.6%), M19 (5.2%), M5 (4.3%) and M8 (1.4%) were minor metabolites; 70.6% of TR was recovered in feces and 19.9% in urine. Duodenal fluid concentrations (% of TR) were highest for JNJ-53718678 (11.6%) followed by M8 (10.4%), M5 (5.9%) and M12 (1.1%). In feces, 10-16% of TR was JNJ-53718678, 5-8% M5, < 1% M12 and < 1% M8. N-glucuronidation to M8 and direct biliary excretion of JNJ-53718678 represented 7% and 8% of drug clearance, respectively. JNJ-53718678 was safe and well tolerated.

Conclusions: JNJ-53718678 is primarily eliminated through CYP3A4-mediated metabolism. By integrating duodenal sampling, N-glucuronidation was confirmed as another metabolic pathway despite the low amount of M8 excreted in urine and feces.

Trial registration: Eudract no. 2016-002664-14.

Keywords: Duodenal fluid sampling; Infectious disease; JNJ-53718678; Mass balance; Respiratory syncytial virus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Animals
  • Area Under Curve
  • Cytochrome P-450 CYP3A / metabolism
  • Humans
  • Imidazolidines / metabolism*
  • Indoles / metabolism*
  • Male
  • Metabolic Clearance Rate
  • Metabolic Networks and Pathways
  • Respiratory Syncytial Viruses / metabolism*

Substances

  • Imidazolidines
  • Indoles
  • JNJ-53718678
  • Cytochrome P-450 CYP3A

Associated data

  • EudraCT/2016-002664-14
  • figshare/10.6084/m9.figshare.10321460