Proliferation of adult human bronchial epithelial cells without a telomere maintenance mechanism for over 200 population doublings

FASEB J. 2020 Jan;34(1):386-398. doi: 10.1096/fj.201902376R. Epub 2019 Nov 22.

Abstract

To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.

Keywords: ROCK inhibitor; conditional reprogramming; low oxygen; senescence; telomerase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bronchi / cytology*
  • Bronchi / physiology
  • Cell Culture Techniques / methods*
  • Cell Division
  • Cell Proliferation*
  • Cells, Cultured
  • Cellular Senescence*
  • Epithelial Cells / cytology*
  • Epithelial Cells / physiology
  • Fibroblasts / cytology*
  • Fibroblasts / physiology
  • Humans
  • Telomerase / metabolism
  • Telomere / physiology*
  • Telomere Shortening

Substances

  • TERT protein, human
  • Telomerase