MIC and Upper Limit of Wild-Type Distribution for 13 Antifungal Agents against a Trichophyton mentagrophytes-Trichophyton interdigitale Complex of Indian Origin

Antimicrob Agents Chemother. 2020 Mar 24;64(4):e01964-19. doi: 10.1128/AAC.01964-19. Print 2020 Mar 24.

Abstract

Dermatophytosis due to the Trichophyton mentagrophytes-Trichophyton interdigitale complex is being increasingly reported across India. Reports of therapeutic failure have surfaced recently, but there are no clinical break points (CBP) or epidemiological cutoffs (ECVs) available to guide the treatment of dermatophytosis. In this study, a total of 498 isolates of the T. mentagrophytes-interdigitale complex were collected from six medical centers over a period of five years (2014 to 2018). Antifungal susceptibility testing of the isolates was carried out for itraconazole, fluconazole, ketoconazole, voriconazole, luliconazole, sertaconazole, miconazole, clotrimazole, terbinafine, amorolfine, naftifine, ciclopirox olamine, and griseofulvin. The MICs (in mg/liter) comprising >95% of the modeled populations were as follows: 0.06 for miconazole, luliconazole, and amorolfine; 0.25 for voriconazole; 0.5 for itraconazole, ketoconazole, and ciclopirox olamine; 1 for clotrimazole and sertaconazole; 8 for terbinafine; 16 for naftifine; 32 for fluconazole; and 64 for griseofulvin. A high percentage of isolates above the upper limit of the wild-type MIC (UL-WT) were observed for miconazole (29%), luliconazole (13.9%), terbinafine (11.4%), naftifine (5.2%), and voriconazole (4.8%), while they were low for itraconazole (0.2%). Since the MICs of itraconazole were low against the T. mentagrophytes-interdigitale complex, this could be considered the choice of first-line treatment. The F397L mutation in the squalene epoxidase (SE) gene was observed in 77.1% of isolates with a terbinafine MIC of ≥1 mg/liter, but no mutation was detected in isolates with a terbinafine MIC of <1 mg/liter. In the absence of CBPs, evaluation of the UL-WT may be beneficial for managing dermatophytosis and monitoring the emergence of isolates with reduced susceptibility.

Keywords: MIC; Trichophyton mentagrophyte; UL-WT; antifungal resistance; dermatophytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antifungal Agents / pharmacology*
  • Arthrodermataceae / drug effects*
  • Arthrodermataceae / genetics
  • Arthrodermataceae / isolation & purification
  • Dermatomycoses / drug therapy*
  • Drug Resistance, Fungal / genetics
  • Humans
  • Indien
  • Microbial Sensitivity Tests

Substances

  • Antifungal Agents

Supplementary concepts

  • Trichophyton interdigitale
  • Trichophyton mentagrophytes