Purpose: As C-arm linac radiation therapy evolves toward faster, more efficient delivery, and more conformal dosimetry, treatments with increasingly complex couch motions are emerging. Monitoring the patient motion independently of the couch motion during non-coplanar, non-isocentric, or dynamic couch treatments is a key bottleneck to their clinical implementation. The goal of this study is to develop a prototype real-time monitoring system for unconventional beam trajectories to ensure a safe and accurate treatment delivery.
Methods: An in-house algorithm was developed for tracking using a couch-mounted three-dimensional (3D) depth camera. The accuracy of patient motion detection on the couch was tested on a 3D printed phantom created from the body surface contour exported from the treatment planning system. The technique was evaluated against a commercial optical surface monitoring system with known phantom displacements of 3, 5, and 7 mm in lateral, longitudinal, and vertical directions by placing a head phantom on a dynamic platform on the treatment couch. The stability of the monitoring system was evaluated during dynamic couch trajectories, at speeds between 10.6 and 65 cm/min.
Results: The proposed monitoring system agreed with the ceiling mounted optical surface monitoring system in longitudinal, lateral, and vertical directions within 0.5 mm. The uncertainty caused by couch vibration increased with couch speed but remained sub-millimeter for speeds up to 32 cm/min. For couch speeds of 10.6, 32.2, and 65 cm/min, the uncertainty ranges were 0.27- 0.73 mm, 0.15-0.87 mm, and 0.28-1.29 mm, respectively.
Conclusion: By mounting a 3D camera in the same frame-of-reference as the patient and eliminating dead spots, this proof of concept demonstrates real-time patient monitoring during couch motion. For treatments with non-coplanar beams, multiple isocenters, or dynamic couch motion, this provides additional safety without additional radiation dose and avoids some of the complexity and limitations of room mounted systems.
Keywords: intrafractional monitoring; non-coplanar; non-isocentric; optical surface monitoring.
© 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.