Background: Clostridioides difficile is transmitted through endospores. Most disinfection procedures for these structures deploy high concentrations of chlorine-derived compounds such as sodium hypochlorite (NaOCl) and sodium dichloroisocyanurate (NaDCC). However, these substances are linked to undesirable public health and environmental issues.
Aim: To compare the efficacy of NaCl-derived electrochemically activated solution (ECAS, 0.18% w/v NaOCl, pH=9.6-10.3), commercial bleach (5000 ppm, 2.83% w/v NaOCl, pH=5.6) and NaDCC (1000 ppm, pH=6.8) to inactivate C. difficile endospores on surfaces using a standard quantitative test (EPA MO-21-03).
Findings: Ten representative reference and field strains from multi-locus sequence typing Clades 1-5 were assayed (N=10). Irrespective of the phylogenetic background of the strains, ECAS showed comparable or better log reduction values [mean=3.22, 95% confidence interval (CI) 0.40-5.56] than bleach (mean=2.74, 95% CI 0.12-5.50) and NaDCC (mean=2.02, 95% CI 0.10-5.12). Cyclic voltammetry measurements revealed similar electrochemical behaviours and open-circuit potentials for ECAS and NaOCl. Congruently, similar morphologies for spores treated with these two compounds were observed by transmission electron microscopy. A factorial design demonstrated that exposure time, but not activation time, influenced the efficacy of ECAS.
Conclusions: ECAS and NaOC were found to have functional equivalence and may have a common mechanism of action.
Keywords: Clostridioides difficile; Cyclic voltammetry; ECAS; Endospores; Surface disinfection.
Copyright © 2020 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.