Purpose: T-cell immunoreceptor with Ig and ITIM domain (TIGIT) blockade could represent an alternative therapeutic option to release the immune response in patients with multiple myeloma. Here we analyzed the expression of TIGIT and its ligands poliovirus receptor (PVR) and nectin-2 in the bone marrow (BM) of patients with monoclonal gammopathies and the efficacy of TIGIT blockade activating antimyeloma immunity.
Experimental design: Expression levels of TIGIT and its ligands were characterized by flow cytometry and ELISA. TIGIT blockade was analyzed in in vitro functional assays with peripheral T cells. BM cells were studied with NanoString technology, real-time PCR, and ex vivo patient BM cell models.
Results: TIGIT and its ligands are highly expressed in the BM of patients with multiple myeloma, suggesting that may play a role in restraining immune activation. TIGIT blockade depleted FoxP3+ Tregs while increasing proliferation of IFNγ-producing CD4+ T cells from patients with multiple myeloma. PVR ligation inhibited CD8+ T-cell signaling and cell proliferation which could be overcome with anti-TIGIT mAb. However, BM cells showed a remarkable heterogeneity in immune signature. Accordingly, functional ex vivo BM assays revealed that only some patients respond to checkpoint blockade. Thus, response to TIGIT blockade correlated with low frequency of TIGIT+ cells and high nectin-2 expression on malignant plasma cells.
Conclusions: TIGIT blockade efficiently reinvigorated peripheral T cells from patients with multiple myeloma. However, in the BM, the efficacy of blocking anti-TIGIT mAb to achieve tumor cell death may depend on the expression of TIGIT and nectin-2, becoming potential predictive biomarkers for identifying patients who may benefit from TIGIT blockade.
©2020 American Association for Cancer Research.