Background: Precise volumetric assessment of brain tumors is relevant for treatment planning and monitoring. However, manual segmentations are time-consuming and impeded by intra- and interrater variabilities.
Purpose: To investigate the performance of a deep-learning model (DLM) to automatically detect and segment primary central nervous system lymphoma (PCNSL) on clinical MRI.
Study type: Retrospective.
Population: Sixty-nine scans (at initial and/or follow-up imaging) from 43 patients with PCNSL referred for clinical MRI tumor assessment.
Field strength/sequence: T1 -/T2 -weighted, T1 -weighted contrast-enhanced (T1 CE), and FLAIR at 1.0, 1.5, and 3.0T from different vendors and study centers.
Assessment: Fully automated voxelwise segmentation of tumor components was performed using a 3D convolutional neural network (DeepMedic) trained on gliomas (n = 220). DLM segmentations were compared to manual segmentations performed in a 3D voxelwise manner by two readers (radiologist and neurosurgeon; consensus reading) from T1 CE and FLAIR, which served as the reference standard.
Statistical tests: Dice similarity coefficient (DSC) for comparison of spatial overlap with the reference standard, Pearson's correlation coefficient (r) to assess the relationship between volumetric measurements of segmentations, and Wilcoxon rank-sum test for comparison of DSCs obtained in initial and follow-up imaging.
Results: The DLM detected 66 of 69 PCNSL, representing a sensitivity of 95.7%. Compared to the reference standard, DLM achieved good spatial overlap for total tumor volume (TTV, union of tumor volume in T1 CE and FLAIR; average size 77.16 ± 62.4 cm3 , median DSC: 0.76) and tumor core (contrast enhancing tumor in T1 CE; average size: 11.67 ± 13.88 cm3 , median DSC: 0.73). High volumetric correlation between automated and manual segmentations was observed (TTV: r = 0.88, P < 0.0001; core: r = 0.86, P < 0.0001). Performance of automated segmentations was comparable between pretreatment and follow-up scans without significant differences (TTV: P = 0.242, core: P = 0.177).
Data conclusion: In clinical MRI scans, a DLM initially trained on gliomas provides segmentation of PCNSL comparable to manual segmentation, despite its complex and multifaceted appearance. Segmentation performance was high in both initial and follow-up scans, suggesting its potential for application in longitudinal tumor imaging.
Level of evidence: 3 TECHNICAL EFFICACY STAGE: 2.
Keywords: deep learning; magnetic resonance imaging; primary central nervous system lymphoma.
© 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.