A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells

Angew Chem Int Ed Engl. 2020 Nov 2;59(45):19835-19840. doi: 10.1002/anie.202005662. Epub 2020 Aug 31.

Abstract

A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm-1 , a high LUMO level of -3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.

Keywords: all-polymer solar cells; non-conjugated polymer acceptors; power conversion efficiency; thermal stability; thioalkyl chain linkages.