Combining synthesis, infrared spectroscopy, and ab initio modeling we show that the titanium-based porous framework Ti-MOF-74 has potential as an environmental nitric oxide (NO) scavenger, exhibiting an extraordinarily strong binding affinity and selectivity over other flue-gas components. The robustness upon exposure to water vapor and high flue-gas stack temperatures suggests that this material can perform well in an industrial environment. In-depth analysis of the Ti-NO bond indicates that the NO forms a strong covalent bond with the Ti. The process of this NO bond formation involves a reaction with the OH- capping groups of the Ti to form NOx groups, after which the excess NO binds to the open Ti metal sites. Ti-MOF-74 thus becomes, to the best of our knowledge, the first known porous framework that binds NO significantly stronger than water, providing novel avenues for environmental and physiological scavenging applications.