A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells

Adv Mater. 2020 Oct;32(43):e2004183. doi: 10.1002/adma.202004183. Epub 2020 Sep 21.

Abstract

Narrow-bandgap polymer semiconductors are essential for advancing the development of organic solar cells. Here, a new narrow-bandgap polymer acceptor L14, featuring an acceptor-acceptor (A-A) type backbone, is synthesized by copolymerizing a dibrominated fused-ring electron acceptor (FREA) with distannylated bithiophene imide. Combining the advantages of both the FREA and the A-A polymer, L14 not only shows a narrow bandgap and high absorption coefficient, but also low-lying frontier molecular orbital (FMO) levels. Such FMO levels yield improved electron transfer character, but unexpectedly, without sacrificing open-circuit voltage (Voc ), which is attributed to a small nonradiative recombination loss (Eloss,nr ) of 0.22 eV. Benefiting from the improved photocurrent along with the high fill factor and Voc , an excellent efficiency of 14.3% is achieved, which is among the highest values for all-polymer solar cells (all-PSCs). The results demonstrate the superiority of narrow-bandgap A-A type polymers for improving all-PSC performance and pave a way toward developing high-performance polymer acceptors for all-PSCs.

Keywords: acceptor-acceptor polymers; all-polymer solar cells; narrow bandgap; nonradiative recombination loss; polymer acceptors.