Coronary computed tomography angiography is an established technique in clinical practice and a valuable tool in the diagnosis of coronary artery disease in humans. Imaging of coronaries in preclinical research, i.e. in small animals, is very difficult due to the high demands on spatial and temporal resolution. Mice exhibit heart rates of up to 600 beats per minute motivating the need for highest detector framerates while the coronaries show diameters below 100 μm indicating the requirement for highest spatial resolution. We herein use a custom built micro-CT equipped with dedicated reconstruction algorithms to illustrate that coronary imaging in mice is possible. The scanner provides a spatial and temporal resolution sufficient for imaging of smallest, moving anatomical structures and the dedicated reconstruction algorithms reduced radiation dose to less than 1 Gy but do not yet allow for longitudinal studies. Imaging studies were performed in ten mice administered with a blood-pool contrast agent. Results show that the course of the left coronary artery can be visualized in all mice and all major branches can be identified for the first time using micro-CT. This reduces the gap in cardiac imaging between clinical practice and preclinical research.