Distributional Reinforcement Learning in the Brain

Trends Neurosci. 2020 Dec;43(12):980-997. doi: 10.1016/j.tins.2020.09.004. Epub 2020 Oct 19.

Abstract

Learning about rewards and punishments is critical for survival. Classical studies have demonstrated an impressive correspondence between the firing of dopamine neurons in the mammalian midbrain and the reward prediction errors of reinforcement learning algorithms, which express the difference between actual reward and predicted mean reward. However, it may be advantageous to learn not only the mean but also the complete distribution of potential rewards. Recent advances in machine learning have revealed a biologically plausible set of algorithms for reconstructing this reward distribution from experience. Here, we review the mathematical foundations of these algorithms as well as initial evidence for their neurobiological implementation. We conclude by highlighting outstanding questions regarding the circuit computation and behavioral readout of these distributional codes.

Keywords: artificial intelligence; deep neural networks; dopamine; machine learning; population coding; reward.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain
  • Dopamine*
  • Humans
  • Mesencephalon
  • Reinforcement, Psychology*
  • Reward

Substances

  • Dopamine