Background: Success in personalized medicine in complex disease is critically dependent on biomarker discovery. We profiled serum proteins using a novel proximity extension assay [PEA] to identify diagnostic and prognostic biomarkers in inflammatory bowel disease [IBD].
Methods: We conducted a prospective case-control study in an inception cohort of 552 patients [328 IBD, 224 non-IBD], profiling proteins recruited across six centres. Treatment escalation was characterized by the need for biological agents or surgery after initial disease remission. Nested leave-one-out cross-validation was used to examine the performance of diagnostic and prognostic proteins.
Results: A total of 66 serum proteins differentiated IBD from symptomatic non-IBD controls, including matrix metallopeptidase-12 [MMP-12; Holm-adjusted p = 4.1 × 10-23] and oncostatin-M [OSM; p = 3.7 × 10-16]. Nine of these proteins are associated with cis-germline variation [59 independent single nucleotide polymorphisms]. Fifteen proteins, all members of tumour necrosis factor-independent pathways including interleukin-1 (IL-1) and OSM, predicted escalation, over a median follow-up of 518 [interquartile range 224-756] days. Nested cross-validation of the entire data set allowed characterization of five-protein models [96% comprising five core proteins ITGAV, EpCAM, IL18, SLAMF7 and IL8], which define a high-risk subgroup in IBD [hazard ratio 3.90, confidence interval: 2.43-6.26], or allowed distinct two- and three-protein models for ulcerative colitis and Crohn's disease respectively.
Conclusion: We have characterized a simple oligo-protein panel that has the potential to identify IBD from symptomatic controls and to predict future disease course. Further prospective work is required to validate our findings.
Keywords: Crohn’s disease; OSM; genetics; inflammatory bowel diseases [IBD]; outcomes; prognosis; protein quantitative trait loci; proteins; proximity extension assay; ulcerative colitis.
© Crown copyright 2020.