Herein, Ce doped CoOOH was used as the catalyst for caffeic acid (CA) degradation by dielectric barrier discharge (DBD) plasma. The treatment performance and catalytic mechanism were studied by a series of experiments and density functional theory (DFT) simulations. The results show that the doping amounts of Ce significantly influenced the catalytic performance of CoOOH in DBD plasma, and the catalytic effect reached maximum when the molar ratio of Ce to Co was 1:9. CA was 100 % degraded by Ce1/Co9OOH/DBD with 10 min treatment, while only 75.6 % of CA was degraded by 10 min DBD treatment. Transformation of O3 and H2O2 to ⋅OH was mainly responsible for the catalytic effect. The content of oxygen vacancies and unsaturated Co (Lewis acid sites) of CoOOH was increased by doping Ce according to the results of experiments and simulations, and the change was conducive to the catalytic reactions. DFT simulations also indicated that DBD generated O3 and H2O2 were decomposed to O atoms, OH groups and free OH by Ce/CoOOH. The presence of reductive species in DBD plasma was confirmed, and ⋅H was a kind of important reactive specie for CA degradation. CA degradation pathway was proposed based on the detected degradation products.
Keywords: Caffeic acid; Dielectric barrier discharge plasma; Lewis acid sites; Metal oxyhydroxides; Oxygen vacancy.
Copyright © 2020 Elsevier B.V. All rights reserved.