Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Keywords: CTLA-4; NDV; PD-1; PD-L1; cancer; immune checkpoint inhibitor; immunotherapy; newcastle disease virus; oncolytic virus; type I interferon.