Lenalidomide and its analogs are well-known for treating multiple myeloma. In this work, designed sulfide-modified lenalidomide and pomalidomide were synthesized and evaluated. The anti-proliferative activity against MM.1S cell line of 3ak (IC50 = 79 nM) was similar to lenalidomide (IC50 = 81 nM). Compared to benzylic thioether substituted lenalidomide 3a, the half-live (T1/2) of 4-F-phenyl-thioether analogs 3ak in human liver microsomes was promoted from 3 min to 416.7 min. The corresponding metabolic factor of 3ak was increased from 2.8% to 79.5%, which was slightly lower than lenalidomide (91.5%). Moreover, the IKZF1 degradation of 3y and 3ak was well related with corresponding IC50 values, which suggested the IKZF1 degradation efficiency is correlated to the responses of MM1. S cells. Furthermore, the oral administration of compounds 3y and 3ak at dosages of 60 mg/kg could delay tumor growth in female CB-17 SCID mice. This research helped to prompt the stability of thioether lenalidomide analogs, which paved the way for developing better molecules for treating multiple myeloma.
Keywords: Late-stage sulfuration; Lenalidomide; MM.1S; Multiple myeloma.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.