Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.