m6 A RNA methylation: from mechanisms to therapeutic potential

EMBO J. 2021 Feb 1;40(3):e105977. doi: 10.15252/embj.2020105977. Epub 2021 Jan 20.

Abstract

RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6 -methyladenosine (m6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre-mRNA processing, nuclear export, decay, and translation. The importance of m6 A methylation as a mode of post-transcriptional gene expression regulation is evident in the crucial roles m6 A-mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6 A deposition on mRNA and its context-dependent effects on mRNA decay and translation, the role of m6 A methylation of non-coding chromosomal-associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6 A regulators in disease.

Keywords: RNA modifications; epitranscriptome; gene expression; m6A methylation; mRNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / metabolism
  • Animals
  • Humans
  • Methyltransferases / metabolism
  • RNA Processing, Post-Transcriptional
  • RNA, Messenger / genetics*
  • RNA, Messenger / metabolism*

Substances

  • RNA, Messenger
  • N-methyladenosine
  • Methyltransferases
  • Adenosine