Open searching has proven to be an effective strategy for identifying both known and unknown modifications in shotgun proteomics experiments. Rather than being limited to a small set of user-specified modifications, open searches identify peptides with any mass shift that may correspond to a single modification or a combination of several modifications. Here we present PTM-Shepherd, a bioinformatics tool that automates characterization of post-translational modification profiles detected in open searches based on attributes, such as amino acid localization, fragmentation spectra similarity, retention time shifts, and relative modification rates. PTM-Shepherd can also perform multiexperiment comparisons for studying changes in modification profiles, e.g., in data generated in different laboratories or under different conditions. We demonstrate how PTM-Shepherd improves the analysis of data from formalin-fixed and paraffin-embedded samples, detects extreme underalkylation of cysteine in some data sets, discovers an artifactual modification introduced during peptide synthesis, and uncovers site-specific biases in sample preparation artifacts in a multicenter proteomics profiling study.
Keywords: Open searching, PTM, Post-translational modification, Mass-tolerant search, Localization, Spectral similarity, Retention time.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.