Checkpoint kinase 1 (CHK1) is a central component in DNA damage response and has emerged as a target for antitumor therapeutics. Herein, we describe the design, synthesis, and biological evaluation of a novel series of potent diaminopyrimidine CHK1 inhibitors. The compounds exhibited moderate to potent CHK1 inhibition and could suppress the proliferation of malignant hematological cell lines. The optimized compound 13 had a CHK1 IC50 value of 7.73±0.74 nM, and MV-4-11 cells were sensitive to it (IC50 =0.035±0.007 μM). Furthermore, compound 13 was metabolically stable in mouse liver microsomes in vitro and displayed moderate oral bioavailability in vivo. Moreover, treatment of MV-4-11 cells with compound 13 for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Based on these biochemical results, we consider compound 13 to be a promising CHK1 inhibitor and potential anticancer therapeutic agent.
Keywords: CHK1 inhibitor; DNA damage response; diaminopyrimidine; oral bioavailability.
© 2021 Wiley-VCH GmbH.