Objectives: To examine the acid-base and histological changes in in vivo rabbit cutaneous tissue after electrochemical therapy.
Study design: In vivo rabbit tissue study.
Methods: The shaved skin on the backs of female Oryctolagus cuniculi were assigned to treatments with or without tumescence with normal saline. Two platinum-needle electrodes were inserted into each treatment area and connected to a direct current (DC) power supply. Voltage (3-5 V) was varied and applied for 5 minutes. The wound-healing process was monitored via digital photography and ultrasonography until euthanasia at day 29. Treatment areas were biopsied, and specimens were sectioned through a sagittal midline across both electrode insertion sites. Samples were then evaluated utilizing light microscopy (hematoxylin and eosin, Masson's Trichrome, and Picrosirius red).
Results: Treatment sites developed mild inflammation that dissipated at lower voltages or became scabs at higher voltages. Ultrasonography demonstrated acoustic shadowing with spatial spread that increased with increasing voltage application. The 4- and 5-V sites treated with saline had localized areas of increased tissue density at day 29. Although specimens treated with 3 V did not look significantly different from control tissue, 4- and 5-V samples with and without saline tumescence had finer, less-organized collagen fibers and increased presence of fibrocytes and inflammatory infiltrates.
Conclusions: Electrochemical therapy caused localized injury to in vivo rabbit cutaneous tissue, prompting regenerative wound repair. With future development, this technology may offer precise, low-cost rejuvenation to restore the functionality and appearance of dermal scars and keloids.
Level of evidence: NA Laryngoscope, 131:E2196-E2203, 2021.
Keywords: Electrochemical therapy; scar revision; skin; skin rejuvenation.
© 2021 The American Laryngological, Rhinological and Otological Society, Inc..