Heterogeneous single-metal-site catalyst or single-atom catalyst research has grown rapidly due to the accessibility of modern characterization techniques that can provide invaluable information at the atomic-scale. Herein, we study the structural evolution of isolated single Pt sites incorporated in a metal-organic framework containing bipyridine functional groups using in situ diffuse reflectance infrared Fourier transform spectroscopy with CO as the probe molecule. The structure and electronic properties of the isolated Pt sites are further corroborated by x-ray photoelectron spectroscopy and aberration-corrected scanning transmission electron microscopy. We find the prerequisite of high temperature He treatment for Pt activation and CO insertion and inquire into the structural transformation of Pt site process by dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy.