Background: Phosphorus (P) is an important in ensuring plant morphogenesis and grain quality, therefore an efficient root system is crucial for P-uptake. Identification of useful loci for root morphological and P uptake related traits at seedling stage is important for wheat breeding. The aims of this study were to evaluate phenotypic diversity of Yangmai 16/Zhongmai 895 derived doubled haploid (DH) population for root system architecture (RSA) and biomass related traits (BRT) in different P treatments at seedling stage using hydroponic culture, and to identify QTL using 660 K SNP array based high-density genetic map.
Results: All traits showed significant variations among the DH lines with high heritabilities (0.76 to 0.91) and high correlations (r = 0.59 to 0.98) among all traits. Inclusive composite interval mapping (ICIM) identified 34 QTL with 4.64-20.41% of the phenotypic variances individually, and the log of odds (LOD) values ranging from 2.59 to 10.43. Seven QTL clusters (C1 to C7) were mapped on chromosomes 3DL, 4BS, 4DS, 6BL, 7AS, 7AL and 7BL, cluster C5 on chromosome 7AS (AX-109955164 - AX-109445593) with pleiotropic effect played key role in modulating root length (RL), root tips number (RTN) and root surface area (ROSA) under low P condition, with the favorable allele from Zhongmai 895.
Conclusions: This study carried out an imaging pipeline-based rapid phenotyping of RSA and BRT traits in hydroponic culture. It is an efficient approach for screening of large populations under different nutrient conditions. Four QTL on chromosomes 6BL (2) and 7AL (2) identified in low P treatment showed positive additive effects contributed by Zhongmai 895, indicating that Zhongmai 895 could be used as parent for P-deficient breeding. The most stable QTL QRRS.caas-4DS for ratio of root to shoot dry weight (RRS) harbored the stable genetic region with high phenotypic effect, and QTL clusters on 7A might be used for speedy selection of genotypes for P-uptake. SNPs closely linked to QTLs and clusters could be used to improve nutrient-use efficiency.
Keywords: Genome-wide linkage mapping; Quantitative trait loci; Root traits; SNP array.