The current pandemic caused by SARS-CoV-2 has seen a widespread use of personal protective equipment, especially face masks. This has created the need to develop better and reusable protective masks with built-in antimicrobial, self-cleaning, and aerosol filtration properties to prevent the transmission of air-borne pathogens such as the coronaviruses. Herein, molybdenum disulfide (MoS2) nanosheets are used to prepare modified polycotton fabrics having excellent antibacterial activity and photothermal properties. Upon sunlight irradiation, the nanosheet-modified fabrics rapidly increased the surface temperature to ∼77 °C, making them ideal for sunlight-mediated self-disinfection. Complete self-disinfection of the nanosheet-modified fabric was achieved within 3 min of irradiation, making the fabrics favorably reusable upon self-disinfection. The nanosheet-modified fabrics maintained the antibacterial efficiency even after 60 washing cycles. Furthermore, the particle filtration efficiency of three-layered surgical masks was found to be significantly improved through incorporation of the MoS2-modified fabric as an additional layer of protective clothing, without compromising the breathability of the masks. The repurposed surgical masks could filter out around 97% of 200 nm particles and 96% of 100 nm particles, thus making them potentially useful for preventing the spread of coronaviruses (120 nm) by trapping them along with antibacterial protection against other airborne pathogens.
Keywords: COVID19; MoS2 nanosheets; PPE.; antibacterial fabric; face mask; photothermal disinfection.