Carboxamide fungicides target succinate dehydrogenase (SDH). Recently published monitoring studies have shown that Corynespora cassiicola isolates are resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B and D subunits. We confirmed, by site-directed mutagenesis of the sdhB and sdhD genes, that each of the mutations identified in the field strains of C. cassiicola conferred resistance to boscalid and, in some cases, cross-resistance to other SDHIs (fluopyram, carboxin and penthiopyrad). Analyses of the enzyme activity and sdhB and sdhD gene expression show that modifications (SdhB_H278Y and SdhD_H105R) that result in a decline in SDH enzyme activity may be complemented by gene overexpression. The SdhB_H278Y, SdhB_I280V and SdhD_H105R mutants suffered large fitness penalties based on their biological properties, including conidia production and germination, mycelial growth, pathogenicity or survival abilities under environment stress. However, fitness cost was not found in the SdhB_H278R, SdhD_D95E and SdhD_G109V mutants. In the evaluation of resistance to boscalid in 2018 and 2019, the frequency of the SdhD_D95E and SdhD_G109V genotypes in the Liaoning and Shandong provinces changed dramatically compared with 2005-2017, from low resistance frequency (0.53% for D95E and 2.53% for G109V) to dominant resistance frequency (17.28% for D95E and 15.38% for G109V). Considering both the fitness and increased frequency of these genotypes, we may infer that the SdhD_D95E and SdhD_G109V mutants will be the dominant resistance mutants in field.
© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.