Occurrence of parabens in outdoor environments: Implications for human exposure assessment

Environ Pollut. 2021 Aug 1:282:117058. doi: 10.1016/j.envpol.2021.117058. Epub 2021 Apr 1.

Abstract

Parabens (PBs) are widely used as preservatives in food, pharmaceuticals and personal care products (PCPs). Due to their potential characteristics, similar to endocrine-disrupting compounds, their safety in our daily products and frequent exposure to human health have become public concerns. Nevertheless, little information is available about the occurrence of PBs in outdoor environments and their implications for human exposure. In this study, seven pairs of gas- and particle-phase air samples and 48 soil samples from Harbin City, China, were collected for the analysis of eight typical PBs (including methyl-paraben, ethyl-paraben, propyl-paraben, isopropyl-paraben, butyl-paraben, isobutyl-paraben, benzyl-paraben, and heptyl-paraben), which have been frequently selected as target compounds in previous studies. Concentrations of ∑8PBs in outdoor air samples were 253-1540 pg/m3 with a median of 555 pg/m3. The results of the gas-particle partitioning indicated that PBs had not reached equilibrium between the gas phase and particle phase. Concentrations of ∑8PBs in the soil samples were <LOQ-5530 ng/kg dw. Higher concentrations of PBs were observed in soils from commercial and residential areas with extensive anthropogenic activities. Based on the inhalation rate of air and ingestion rate of soil, the estimated daily intake (EDI) was calculated. The EDI values (EDIair + EDIsoil) for male adults, female adults and children were comparable, with mean values of 2.74 × 10-2, 3.21 × 10-2 and 2.70 × 10-2 ng/kg-bw/day, respectively. All EDIs were much lower than the daily acceptable intake, indicating lower health risk with PB occurrence in outdoor environments. Finally, the total EDI from all external exposure routes (outdoor air, indoor air, soil, indoor dust, foodstuffs, pharmaceuticals and PCPs) was calculated for the first time. The total EDI was not consistent with that of the internal exposure, which provided new insight into future studies for human exposure assessment.

Keywords: Human exposure; Outdoor air; Outdoor environment; Parabens; Soil.

MeSH terms

  • Adult
  • Child
  • China
  • Dust / analysis
  • Environmental Exposure* / analysis
  • Female
  • Humans
  • Male
  • Parabens* / analysis
  • Preservatives, Pharmaceutical / analysis

Substances

  • Dust
  • Parabens
  • Preservatives, Pharmaceutical