The genus Isoëtes is globally distributed. Within the Neotropics, Isoëtes occurs in various habitats and ecosystems, making it an interesting case study to address phylogenetic and biogeographic questions. We sequenced and assembled plastomes and ribosomal DNA (rDNA) sequences to reconstruct phylogenetic relationships in Isoëtes from tropical regions in the Neotropics. The ploidy level of nine taxa was established to address the potential source of phylogenetic incongruence in the genus. Node ages were estimated using MCMCTree. The ancestral range estimates were conducted in BioGeoBEARS. Plastome-based phylogenies were congruent throughout distinct matrices and partition schemes, exhibiting high support for almost all nodes. Whereas, we found incongruences between the rDNA and plastome datasets. Chromosome counts identified three diploids, five tetraploids and one likely hexaploid among Neotropical species. Plastome-based node age estimates showed that the radiation of the crown Isoëtes group occurred at 20 Ma, with the diversification of the tropical American (TAA) clade taking place in the Pleistocene at 1.7 Ma. Ancestral range estimates showed that the ancestor of the TAA clade may have evolved first in the dry diagonal area in South America before reaching more humid regions. In addition, the colonization of the Brazilian semiarid region occurred three times, while the occupation of the Cerrado and Amazon regions occurred twice and once, respectively. Our study showed a large unobserved diversity within the genus in warm-dry regions in the Neotropics. Plastomes provided sufficient genomic information to establish a robust phylogenetic framework to answer evolutionary questions in Isoëtes from the Neotropics.
Keywords: Chloroplast genome; Dry diagonal; Isoëtales; Lycophytes; Polyploids; Ribosomal DNA.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.