The production of good sound generation in the violin is a complex task that requires coordination and spatiotemporal control of bowing gestures. The use of motion-capture technologies to improve performance or reduce injury risks in the area of kinesiology is becoming widespread. The combination of motion accuracy and sound quality feedback has the potential of becoming an important aid in violin learning. In this study, we evaluate motion-capture and sound-quality analysis technologies developed inside the context of the TELMI, a technology-enhanced music learning project. We analyzed the sound and bow motion of 50 participants with no prior violin experience while learning to produce a stable sound in the violin. Participants were divided into two groups: the experimental group (N = 24) received real-time visual feedback both on kinematics and sound quality, while participants in the control group (N = 26) practiced without any type of external help. An additional third group of violin experts performed the same task for comparative purposes (N = 15). After the practice session, all groups were evaluated in a transfer phase without feedback. At the practice phase, the experimental group improved their bowing kinematics in comparison to the control group, but this was at the expense of impairing the sound quality of their performance. At the retention phase, the experimental group showed better results in sound quality, especially concerning control of sound dynamics. Besides, we found that the expert group improved the stability of their sound while using the technology. All in all, these results emphasize the importance of feedback technologies in learning complex tasks, such as musical instrument learning.
Keywords: e-learning; feedback; kinematics; motion capture; motor learning; music; music learning; violin.
Copyright © 2021 Blanco, Tassani and Ramirez.