Detection of fixation points using a small visual landmark for brain-computer interfaces

J Neural Eng. 2021 Jul 5;18(4). doi: 10.1088/1741-2552/ac0b51.

Abstract

Objective.The speed of visual brain-computer interfaces (v-BCIs) has been greatly improved in recent years. However, the traditional v-BCI paradigms require users to directly gaze at the intensive flickering items, which would cause severe problems such as visual fatigue and excessive visual resource consumption in practical applications. Therefore, it is imperative to develop a user-friendly v-BCI.Approach.According to the retina-cortical relationship, this study developed a novel BCI paradigm to detect the fixation point of eyes using a small visual stimulus that subtended only 0.6° in visual angle and was out of the central visual field. Specifically, the visual stimulus was treated as a landmark to judge the eccentricity and polar angle of the fixation point. Sixteen different fixation points were selected around the visual landmark, i.e. different combinations of two eccentricities (2° and 4°) and eight polar angles (0,π4,π2,3π4,π,5π4,3π2and7π4). Twelve subjects participated in this study, and they were asked to gaze at one out of the 16 points for each trial. A multi-class discriminative canonical pattern matching (Multi-DCPM) algorithm was proposed to decode the user's fixation point.Main results.We found the visual stimulation landmark elicited different spatial event-related potential patterns for different fixation points. Multi-DCPM could achieve an average accuracy of 66.2% with a standard deviation of 15.8% for the classification of the sixteen fixation points, which was significantly higher than traditional algorithms (p⩽0.001). Experimental results of this study demonstrate the feasibility of using a small visual stimulus as a landmark to track the relative position of the fixation point.Significance.The proposed new paradigm provides a potential approach to alleviate the problem of irritating stimuli in v-BCIs, which can broaden the applications of BCIs.

Keywords: brain–computer interface (BCI); event-related potential (ERP); multi-class discriminative canonical pattern matching (Multi-DCPM); retina-cortical mapping; space division multiple access (SDMA).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain-Computer Interfaces*
  • Electroencephalography
  • Evoked Potentials, Visual
  • Humans
  • Photic Stimulation
  • Retina