Neutrophil extracellular traps (NETs): the role of inflammation and coagulation in COVID-19

Am J Transl Res. 2021 Aug 15;13(8):8575-8588. eCollection 2021.

Abstract

COVID-19 has swept quickly across the world with a worrisome death toll. SARS-CoV-2 infection induces cytokine storm, acute respiratory distress syndrome with progressive lung damage, multiple organ failure, and even death. In this review, we summarize the pathophysiologic mechanism of neutrophil extracellular traps (NETs) and hypoxia in three main phases, focused on lung inflammation and thrombosis. Furthermore, microparticle storm resulted from apoptotic blood cells are central contributors to the generation and propagation of thrombosis. We focus on microthrombi in the early stage and describe in detail combined antithrombotic with fibrinolytic therapies to suppress microthrombi evolving into clinical events of thrombosis. We further discuss pulmonary hypertension causing plasmin, fibrinogen and albumin, globulin extruding into alveolar lumens, which impedes gas exchange and induces severe hypoxia. Hypoxia in turn induces pulmonary hypertension, and amplifies ECs damage in this pathophysiologic process, which forms a positive feedback loop, aggravating disease progression. Understanding the mechanisms paves the way for current treatment of COVID-19 patients.

Keywords: COVID-19; acute respiratory distress syndrome; hypoxia; neutrophil extracellular traps; thrombosis; treatment strategy.

Publication types

  • Review