Objectives: The present study aimed to assess the oxidative stress and the viability of dental pulp cells stimulated by lipopolysaccharide (LPS) and submitted to photobiomodulation (PBM) with infrared light-emitting diode (LED, 850 nm).
Design: Three healthy primary teeth (n = 3) were collected and seeded in 24-well plates with 10 µg/mL of LPS to induce inflammatory mediator formation. The cells were irradiated (850 nm, 40 mW/cm2 and 80 mW/cm2) at the proposed radiant exposures of 0 (control), 4, 15, and 30 J/cm2 shortly after LPS supplementation. The tests were performed 24 h after irradiation to assess mitochondrial activity (MTT assay), the number of viable cells (Trypan Blue), cell morphology (Scanning Electron Microscopy - SEM), and the quantification of Nitric Oxide (NO) and Reactive Oxygen Species (ROS). The data were analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05).
Results: The irradiated groups showed larger viable cells number than the non-irradiated group with LPS (p < 0.0001). All irradiation parameters decreased ROS concentrations after LPS application compared to the non-irradiated group (p < 0.05). All irradiation parameters enhanced the NO values compared to those of the control group (p < 0.05). The SEM images showed cells with regular morphology that adhered to the substrate.
Conclusions: According to the parameters used in this study, the radiant exposure of 15 J/cm2 and irradiance of 40 mW/cm2 were the most effective irradiation parameters to stimulate and modulate oxidative stress in the primary teeth-derived dental pulp cells.
Keywords: Dental pulp cells; Infrared LED; Irradiation; Reactive oxygen species.
Copyright © 2021 Elsevier Ltd. All rights reserved.