Purpose: Conventional cone-beam computed tomography CT (CBCT) provides limited discrimination between low-contrast tissues. Furthermore, it is limited to full-spectrum energy integration. A dual-energy CBCT system could be used to separate photon energy spectra with the potential to increase the visibility of clinically relevant features and acquire additional information relevant in a multitude of clinical imaging applications. In this work, the performance of a novel dual-layer dual-energy CBCT (DL-DE-CBCT) C-arm system is characterized for the first time.
Methods: A prototype dual-layer detector was fitted into a commercial interventional C-arm CBCT system to enable DL-DE-CBCT acquisitions. DL-DE reconstructions were derived from material-decomposed Compton scatter and photoelectric base functions. The modulation transfer function (MTF) of the prototype DL-DE-CBCT was compared to that of a commercial CBCT. Noise and uniformity characteristics were evaluated using a cylindrical water phantom. Effective atomic numbers and electron densities were estimated in clinically relevant tissue substitutes. Iodine quantification was performed (for 0.5-15 mg/ml concentrations) and virtual noncontrast (VNC) images were evaluated. Finally, contrast-to-noise ratios (CNR) and CT number accuracies were estimated.
Results: The prototype and commercial CBCT showed similar spatial resolution, with a mean 10% MTF of 5.98 cycles/cm and 6.28 cycles/cm, respectively, using a commercial standard reconstruction. The lowest noise was seen in the 80 keV virtual monoenergetic images (VMI) (7.40 HU) and the most uniform images were seen at VMI 60 keV (4.74 HU) or VMI 80 keV (1.98 HU), depending on the uniformity measure used. For all the tissue substitutes measured, the mean accuracy in effective atomic number was 98.2% (SD 1.2%) and the mean accuracy in electron density was 100.3% (SD 0.9%). Iodine quantification images showed a mean difference of -0.1 (SD 0.5) mg/ml compared to the true iodine concentration for all blood and iodine-containing objects. For VNC images, all blood substitutes containing iodine averaged a CT number of 43.2 HU, whereas a blood-only substitute measured 44.8 HU. All water-containing iodine substitutes measured a mean CT number of 2.6 in the VNC images. A noise-suppressed dataset showed a CNR peak at VMI 40 keV and low at VMI 120 keV. In the same dataset without noise suppression applied, a peak in CNR was obtained at VMI 70 keV and a low at VMI 120 keV. The estimated CT numbers of various clinically relevant objects were generally very close to the calculated CT number.
Conclusions: The performance of a prototype dual-layer dual-energy C-arm CBCT system was characterized. Spatial resolution and noise were comparable with a commercially available C-arm CBCT system, while offering dual-energy capability. Iodine quantifications, effective atomic numbers, and electron densities were in good agreement with expected values, indicating that the system can be used to reliably evaluate the material composition of clinically relevant tissues. The VNC and monoenergetic images indicate a consistent ability to separate clinically relevant tissues. The results presented indicate that the system could find utility in diagnostic, interventional, and radiotherapy planning settings.
Keywords: cone-beam computed tomography; dual-energy CBCT; dual-layer; flat detector; material decomposition.
© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.