In this study, environmentally friendly bionanocomposite films were prepared by incorporating phlorotannins from Sargassum (PS) into konjac glucomannan (KGM)/cotton cellulose nanocrystals (CNC) composites. The effects of different concentrations of PS (5%, 9%, 13%, and 17%, w/w) on the microstructure, physical properties, antioxidant and antibacterial activities of the resultant bionanocomposite films were evaluated. The results of scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectra showed that PS was well compatible with the KGM/CNC composites matrix, which led to form a compact and uniform structure of the films. Thermogravimetric analysis and differential scanning calorimetry demonstrated that incorporating PS improved the heat stability of KGM/CNC bionanocomposite films. And addition of the appropriate amount of PS improved the mechanical and water-vapor barrier-related properties of the bionanocomposite film. For instance, with 9% PS, the tensile strength of the KGM/CNC/PS bionanocomposite film increased by 33.9%, and the water-vapor transmittance decreased by 41.67% compared to that of the KGM/CNC films. Moreover, the addition of PS endowed the KGM/CNC film with excellent antioxidant and antibacterial properties. Therefore, KGM/CNC/PS bionanocomposite films have great potential to be applicated as active packaging in the food packaging industry.
Keywords: Active packaging; Konjac glucomannan/cotton cellulose nanocrystals; Phlorotannin from Sargassum.
Copyright © 2021. Published by Elsevier B.V.