Untranslated regions of mRNA (UTRs) are involved in defining the fate of the transcript through processes such as mRNA localization, degradation, translation initiation regulation, and several others: the action of trans-factors such as RNA-binding proteins and non-coding RNAs, combined with the presence of defined sequence and structural cis-elements, ultimately determines protein synthesis levels. Identifying functional regions in UTRs and uncovering post-transcriptional regulators acting upon these is thus of paramount importance to understand this regulatory layer: these tasks can now be approached computationally to reduce the testable hypothesis space and drive the experimental validation in a more effective way.This chapter will focus on presenting databases and tools allowing to study the various aspects of post-transcriptional regulation, including the profiling of actively translated mRNAs, regulatory network analysis (e.g., RBP and ncRNA binding sites), trans-factor binding sites prediction, motif search (sequence and secondary structure), and other aspects of this regulatory layer: two potential analysis pipelines are also presented as practical examples of how these tools could be integrated and effectively employed.
Keywords: Binding site; Bioinformatics; Data analysis; Database; Motif; Omics; Pipeline; Polysomal profiling; Prediction; RBP; Secondary structure; UTR; ncRNA.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.