Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis

Biology (Basel). 2021 Oct 26;10(11):1104. doi: 10.3390/biology10111104.

Abstract

TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.

Keywords: Arabidopsis thaliana; GhTCP62; TCP; cotton; plant architecture; shoot branching.