Hydrogel Droplet Microarray for Genotyping Antimicrobial Resistance Determinants in Neisseria gonorrhoeae Isolates

Polymers (Basel). 2021 Nov 10;13(22):3889. doi: 10.3390/polym13223889.

Abstract

A multiplex assay based on a low-density hydrogel microarray was developed to identify genomic substitutions in N. gonorrhoeae that determine resistance to the currently recommended treatment agents ceftriaxone and azithromycin and the previously used drugs penicillin, tetracycline, and ciprofloxacin. The microarray identifies 74 drug resistance determinants in the N. gonorrhoeae penA, ponA, porB, gyrA, parC, rpsJ, mtrR, blaTEM, tetM, and 23S rRNA genes. The hydrogel elements were formed by automated dispensing of nanoliter-volume droplets followed by UV-induced copolymerization of NH2-containing oligonucleotides with gel-forming monomers. Polybutylene terephthalate plates without special modifications were used as microarray substrates. Sequences and concentrations of immobilized oligonucleotides, gel composition, and hybridization conditions were carefully selected, and the median discrimination ratio ranged from 2.8 to 29.4, allowing unambiguous identification of single-nucleotide substitutions. The mutation identification results in a control sample of 180 N. gonorrhoeae isolates were completely consistent with the Sanger sequencing results. In total, 648 clinical N. gonorrhoeae isolates obtained in Russia during the last 5 years were analyzed and genotyped using these microarrays. The results allowed us to draw conclusions about the present situation with antimicrobial susceptibility of N. gonorrhoeae in Russia and demonstrated the possibility of using hydrogel microarrays to control the spread of antibiotic resistance.

Keywords: DNA hybridization; Neisseria gonorrhoeae; antimicrobial resistance determinants; hydrogels; mutations; oligonucleotide microarray.