The aim of this article was to compare the biomechanical properties of commercial composites containing different photoinitiators: Filtek Ultimate (3M ESPE) containing camphorquinone (CQ); Estelite Σ Quick (Tokuyama Dental) with CQ in RAP Technology®; Tetric EvoCeram Bleach BLXL (Ivoclar Vivadent AG) with CQ and Lucirin TPO; and Tetric Evoceram Powerfill IVB (Ivoclar Vivadent AG) with CQ and Ivocerin TPO. All samples were cured with a polywave Valo Lamp (Ultradent Products Inc.) with 1450 mW/cm2. The microhardness, hardness by Vicker's method, diametral tensile strength, flexural strength and contraction stress with photoelastic analysis were tested. The highest hardness and microhardness were observed for Filtek Ultimate (93.82 ± 17.44 HV), but other composites also displayed sufficient values (from 52 ± 3.92 to 58,82 ± 7.33 HV). Filtek Ultimate not only demonstrated the highest DTS (48.03 ± 5.97 MPa) and FS (87.32 ± 19.03 MPa) but also the highest contraction stress (13.7 ± 0.4 MPa) during polymerization. The TetricEvoCeram Powerfill has optimal microhardness (54.27 ± 4.1 HV), DTS (32.5 ± 5.29 MPa) and FS (79.3 ± 14.37 MPa) and the lowest contraction stress (7.4 ± 1 MPa) during photopolymerization. To summarize, Filtek Ultimate demonstrated the highest microhardness, FS and DTS values; however, composites with additional photoinitiators such as Lucirin TPO and Ivocerin have the lowest polymerization shrinkage. These composites also have higher FS and DTS and microhardness than material containing CQ in Rap Technology.
Keywords: Ivocerin; Lucirin TPO; RAP technology®; camphorquinone; commercial composite; dental composites; preventive dentistry; resin-based composite; restorative dentistry.