Pyroptosis is an inflammatory form of cell death executed by transmembrane pore-forming proteins known as gasdermins and can be activated in an inflammasome-dependent or -independent manner. Inflammasome-dependent pyroptosis is triggered in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and has emerged as an important player in the pathogenesis of multiple inflammatory diseases, mainly by releasing inflammatory contents. More recently, numerous studies have revealed the intricate mechanisms of pyroptosis and its role in the development of neuroinflammation in central nervous system (CNS) diseases. In this review, we summarize current understandings of the molecular and regulatory mechanisms of pyroptosis. In addition, we discuss how pyroptosis can drive different forms of neurological diseases and new promising therapeutic strategies targeting pyroptosis that can be leveraged to treat neuroinflammation.
Keywords: caspase; gasdermins; inflammasomes; neuroinflammation; neurological diseases.
Copyright © 2021 Elsevier Ltd. All rights reserved.