Knowledge of the BRAF mutational status has become essential for melanoma therapeutic management. B-Raf inhibitors are associated with significant overall survival in patients with BRAFV600-mutated metastatic melanoma. Although the BRAF mutation appears to be an early and driver mutation, some authors hypothesized that its expression was not stable during melanoma progression, suggesting a molecular heterogeneity. This argument is often used to explain discrepancy in molecular status among patients with melanoma, discrepancies that we occasionally met during our practice. We retrospectively compared BRAF mutational status on matched melanoma samples (primary & metastatic lesions), thus 150 samples from 56 patients were analysed through immunohistochemistry anti-BRAF, PCR-HRM and Sanger sequencing, Next Generation Sequencing (NGS) and digital PCR. Seven cases presented an apparent tumor heterogeneity. The analysis of these discrepancies by a technique of increasing sensitivity made it possible to identify 1 false-negative result for the immunohistochemistry, 1 false-negative result for the NGS sequencing and 5 (3%) false-negative results by PCR-HRM SANGER. Our results are consistent with the most recent data, demonstrating the stability of the BRAF mutation during the course of melanoma. Immunohistochemistry shows excellent sensitivity for detecting the main BRAF mutation. In our study, the mutational heterogeneity was actually misleading, a result of imperfect sensitivity of some older molecular approaches.
Keywords: BRAF V600E mutation; Digital PCR; Hétérogénéité tumorale; Immunohistochemistry BRAF V600E; Immunohistochimie BRAF V600E; Melanoma; Mutation BRAF V600E; Mélanome; Next-Generation Sequencing; PCR digitale; PCR-HRM sequencing; Séquençage NGS; Séquençage PCR-HRM; Tumor heterogeneity.
Copyright © 2021 Elsevier Masson SAS. All rights reserved.