Summary: RNA 3D architectures are stabilized by sophisticated networks of (non-canonical) base pair interactions, which can be conveniently encoded as multi-relational graphs and efficiently exploited by graph theoretical approaches and recent progresses in machine learning techniques. RNAglib is a library that eases the use of this representation, by providing clean data, methods to load it in machine learning pipelines and graph-based deep learning models suited for this representation. RNAglib also offers other utilities to model RNA with 2.5 D graphs, such as drawing tools, comparison functions or baseline performances on RNA applications.
Availability and implementation: The method is distributed as a pip package, RNAglib. Data are available in a repository and can be accessed on rnaglib's web page. The source code, data and documentation are available at https://rnaglib.cs.mcgill.ca.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].