Self-adhering implantable devices, which can be immobilized inside the bodies without suturing nor organic glues, made of metallic biomaterials would be optimal devices for preventing device-related complications such as device migration after implantation. We reported previously that acid-treated commercially-pure titanium (CpTi) adhered directly and immediately on hydrous non-keratinized soft tissues. Herein, we investigated the influence of sandblasting as pretreatment for acid-treated CpTi to increase its soft tissue adhesiveness. First, the effects of sandblasting conditions (i.e., pressure, distance and time) were investigated in terms of the sandblasted surface area and the degree of deformation (i.e., internal stress formation) of CpTi films. The effect of the sandblasting on the immediate soft tissue adhesion of acid-treated CpTi was investigated using an ex vivo shear adhesion test with mouse dermal tissues. The optimal sandblasting pretreatment remarkably improved the soft tissue adhesion strength of acid-treated CpTi (102 ± 19 kPa) compared with the non-sandblasted counterparts (41 ± 2 kPa). Finally, the CpTi adhesive was applied for immobilizing a near field communication (NFC) device in vivo, and was shown to have strong immediate adhesion to muscle fascia.
Keywords: Acid treatment; Sandblasting; Soft tissue adhesion; Titanium.
Copyright © 2021 Elsevier B.V. All rights reserved.