With the fast development of flexible wearable electronics, mobile electronic equipment, electric tool and electric vehicles, high specific capacity, superior cycle stability and excellent fast-charge performance are required for lithium-ion batteries (LIBs). Nevertheless, commercial graphite with the limited theoretical capacity (372 mAh g-1) and short lifespan is difficult to satisfy the requirements of the new generation of LIBs. In this work, the three-dimensional flexible molybdenum oxynitride (MNO) thin films with non-binder were prepared by magnetron sputtering approach. The charge transfer resistance and Li-ion diffusion coefficient were measured by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and the results show that molybdenum nitride is helpful to increase the diffusion and electron transfer of Li-ion. The MNO thin film annealed at 300 °C with irregular aggregate matrix structure shows a discharge capacity of 413 mAh g-1 after 180 cycles at 1 A g-1. The outstanding rate performance and cycle stability suggest that these binder-free thin film electrodes, especially nitrides, offer great opportunity for energy storage systems with fast-charge capabilities.
Keywords: Binder-free; Electrochemical properties; Magnetron sputtering; Molybdenum oxynitride; Thin film.
Copyright © 2021 Elsevier Inc. All rights reserved.